Traditional palaeontology as we think of it
consists of finding bones, shells, etc., and describing them and mounting the
skeletons in a museum to look at. However, most of the actual science is looking
at things like behaviour. From looking at bones, how can we infer the animal’s
behaviour? And more than that, how can we figure out things like predation and
interactions between different animals?
Of course, your average bone isn’t going to
tell you this kind of information, but bones with bite traces can start to give
us these hints. Bite traces on bones can tell us that the animal was attacked,
and in what way. If the bone shows evidence of healing, then the animal was
obviously attacked while it was still alive and survived the attack. However,
if there is no evidence of healing (and this is substantially more common),
then the animal was dead. Whether or not it was a fatal blow where the animal
was attacked and died, or whether it was dead for some time before being chewed
on can be harder to tell.
Bite traces on Late Cretaceous dinosaur bones showing serrated marks. From Jacobsen and Bromley (2009). |
Majungatholus tooth showing denticles and bite traces showing denticle marks. From Rogers et al. (2003). |
Different kinds of bites can leave
different traces on the bone, as well as different kinds of teeth. Fine detailed
analysis can help us understand exactly how these marks were made, and by what
kind of animal. For example, teeth with denticles (small tooth-like projections) can often leave drag traces from the denticles on the bone after biting and dragging, which can only be made by denticles or serrated teeth. Many theropod dinosaurs have denticles, including tyrannosaurs, dromeosaurs, troodontids, etc. Conversely, many crocodilians do not have denticles or serrated tooth, but rather have a simple cone-shaped tooth, so the lack of serration traces can suggest this kind of predator (but does not necessarily mean that). Additionally, different bite traces can indicate different behaviours such as gnawing. Mammalian gnawing leaves very distinct traces on the bones that are not produced by other means. This has been seen in Late Cretaceous dinosaur bones that were gnawed on by multituberculate mammals. Bite traces can range from punctures (when the tooth breaks through the bone cortex) and pits (a single vertical bite with no cortical breakage), to scores and drags, caused when the animal bits and drags its teeth across the bone.
Multituberculate gnaw traces on several Late Cretaceous bones. From Longrich and Ryan (2010). |
Unfortunately, determining the exact
predator can be extremely difficult, if not impossible in many cases. Generally
we can narrow it down to “theropod”, “crocodile”, “mammal”, or other broad
categories like that. If you’re in an area where there are very few theropod
predators for example, than you can make a reasonable assumption that that is
what caused it. Or if you have other evidence, like for example numerous shed
teeth from a tyrannosaur like Albertosaurus,
then it’s not unreasonable to assume that bite traces may be due to Albertosaurus.
However, there are cases where the predator can be identified. One example of where the
predator is clear is a beautifully preserved azhdarchid pterosaur from Alberta.
The animal consists of a partial skeleton (7 bones to be exact) with wing, leg,
and vertebrae present. The coolest part of this is that one of the long bones has
several bite traces on the shaft on one end (Currie and Jacobsen 1995). This alone would not be enough to
identify the cultprit. However, conveniently, it also has a partial tooth still
embedded in the bone. This tooth can be identified as a dromaeosaurid tooth.
The only dromaeosaurid known from this time in this area of the world is Saurornitholestes, which is pretty well
known from teeth and a few skeletal remains in Dinosaur Provincial Park, Alberta, where this pterosaur was found.
It’s a pretty cool specimen, especially considering how rare pterosaur remains
are in Alberta. To find one with bite traces and a tooth is pretty cool! Teeth are not infrequently embedded in bone, and this has happened in other pterosaur remains, as well as dinosaurs and many other extinct animals.
Azhdarchid pterosaur long bone with tooth embedded (right side, bottom of the bone). Image by Liz Martin. |
Close up of pterosaur bone with tooth emedded and bite traces visible. Image by Liz Martin |
Examples of dermestid mandible marks on Jurassic Camptosaurus bones. From Britt et al. (2008). |
In addition to predation traces, there are also several other kinds of marks that can be found on a specimen, including trample traces, transport marks (abrasion, etc.), and other kinds of breakage indicators. This leads to the field of taphonomy, which is basically everything that has happened to an animal from the time it dies to when it is discovered by a palaeontologist. These things tell us about the environment it lived in and aspects of its preservation, and is much to wide of a topic to discuss here. Maybe next time!
Determining the different marks or traces on fossil bones, where they came from, and what other animal may have caused them can be extremely difficult, despite the fact that these marks can be extremely common in the fossil record.
NOTE: Since posting this, Lothar Vallon has pointed out that there is a specific scientific definition for the use of marks vs. trace, in case anyone is wondering why I use trace in most places and mark in others. You can see his comment below!
References
Britt, BB, et al. 2008. A suite of dermestid beetle traces on dinosaur bone from the Upper Jurassic Morrison Formation, Wyoming, USA. Ichnos 15: 59-71.
Currie, PJ, and Jacobsen, AR. 1995. An azhdarchid pterosaur eaten by a velociraptorine theropod. Canadian Journal of Earth Sciences 32: 922-925.
Hone, DWE, and Tanke, DH. 2015. Pre- and postmortem tyrannosaurus bite marks on the remains of Daspletosaurus (Tyrannosaurinae: Theropoda) from Dinosaur Provincial Park, Alberta, Canada. PeerJ 3: e885.
Jacobsen, AR, and Bromley, RG. 2009. New ichnotaxa based on tooth impressions on dinosaur and whale bones. Geological Quarterly 53: 373-382.
Longrich, NR, and Ryan, MJ. 2010. Mammalian tooth marks on the bones of dinosaurs and other Late Cretaceous vertebrates. Palaeontology 53: 703-709.
Rogers, RR, et al. 2003. Cannibalism in the Madagascan dinosaur Majungatholus atopus. Nature 422: 515-518.